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Abstract

We study the evolution of spectral curvature of emitting electron energy distribution (EED)

against its peak energy in a combined stochastic acceleration and cooling scenario by inverse

Compton (IC) modeling of spectral energy distributions (SEDs) of Fermi bright blazars. The

blazar sample shows the theoretical blazar sequence between jet power and peak energy,

and another sequence between jet power and curvature, suggesting that spectral curvature

might be an important parameter of blazar sequence. Curvature evolves differently in blazars

depending on the source conditions. We find that the curvature anti-correlates with peak

energy in BL Lac objects (BL Lacs), that is a signature of pure hard-sphere stochastic acceler-

ation. The curvature of FSRQs rather evolves in a transition cooling regime, where curvature

either correlates positively with the peak energy or remains steady.

Introduction & Background

The broadband spectral energy distribution (SED) of a blazar is significantly curved. The curvature

of observed SED is related to an intrinsic curvature of source electron energy distribution (EED).

The curvature in source EED can be explained either due to radiative cooling or a stochastic

acceleration mechanism.

In a pure cooling scenario, an accelerated power-law EED N(γ) = Kγ−p injected into the

jet will be broken at an energy γb and the spectral index at high energy tail steepens to p1 .
Now ∆p = |p1 − p| ' 1 roughly measures the curvature of EED. Since the spectral index
α = (p − 1)/2 for optically thin non-thermal spectra, an EED curvature ∆p ' 1 leads to
curvature ∆α = |α1 − α| ' 0.5. Thus a cooing scenario leads to a constant curvature
∆α ' 0.5.
A stochastic accelerationmechanism inwhich the probability of acceleration decayswith particle

energy (Massaro et al. 2004) or the gain is random (Tramacere et al. 2011) leads to a curved

EED, approximated by a log-parabolic law as given by

N(γ) = N0

(
γ

γ0

)−a−b log(γ/γ0)

,

where a is spectral index at reference energy γ0 and b is curvature parameter. The peak energy
of EED becomes

log γp = log γ0 +
3 − a

2b
.

This shows that in a purely acceleration scenario, the curvature b is inversely related to peak
energy γp . The spectra of blazars are curved even in a single X-ray energy band as shown in

Figure 1.

Figure 1:The keV X-ray spectra of high synchrotron peak blazar Mrk 501 (Massaro et al. 2004).

The synchrotron radiation spectra of log-parabolic EED follow similar shape. The keV photon

spectra are fitted by a log-parabolic model

F (E) = K

(
E

E0

)−α+β log(E/E0)

(ph.cm−2s−1keV−1),

where photon curvature β ≈ b/5 (Massaro et al. 2006).

The Stochastic Acceleration: Statistical Description

The log-parabolic SED in the νFν form is described as

log(νFν ) = log(νpFνp
) − β log

(
ν

νp

)

The stochastic acceleration suggests a linear relationship between SED peak frequency νp and

curvature parameter β (Chen 2014) as

1
β

= A · log νp + B,

Where slope A = 5/2 for energy dependent and 10/3 for random gain mechanism.
Chen (2014) found that slopeA is nearly consistent with energy dependent acceleration.

The Motivation

The correlation between νp and β does not correspond to an intrinsic correlation between

γp and b, since νp ∝ γ2
pBδ also depends on B and δ. Thus the intrinsic signature of

stochastic acceleration has not been found previously. Furthermore, the evolution of intrinsic

EED curvature b in a combined cooling and acceleration scenario has not been studied in
observed blazars.

The Sample

We obtain the SEDs of 48 Fermi-LAT blazars from LAT Bright AGN Sample (LBAS) from Abdo

et al. (2010). The SEDs include quasi-simultaneous Fermi-LAT and SWIFT-XRT and -UVOT.

23 FSRQs

9 low synchrotron peak BL Lacs (LBLs).

8 intermediate synchrotron peak BL Lacs (IBLs).

8 high synchrotron peak BL Lacs (HBLs).

The Model

We assume a one-zone inverse Comton (IC) model assuming a log-parabolic EED, that is pro-

duced in a stochastic acceleration.

EED: N (γ) = N0 (γ/γp)−3 10−b log
(

γ/γp

)2

Peak energy: γp =
√

νc/νs

Emission coefficient: j(ν) = 1
4π

∫
N(γ)P (ν, γ)dγ

Average synchrotron power: Ps(γ) = 4
3 σT cγ2UB

Magnetic energy density: UB = B2/8π

Average IC power: Pc(γ) = 4
3 σT cγ2Urad

Radiation energy density: Urad = L/4πR2c

For SSC: Ussc(ν) = (9/4)Ls(ν)/(4πR2c)

For EC: Uec = 17Γ2

12
ηLdisk

4πR2c

We assume Γ = δ.
The SED is described as

L(ν
′) = 2π

2
R

3
j(ν

′)
2τ2 − 1 + (2τ + 1) e−2τ

τ3
.

We use synchrotron self-absorption and a full Klein-Nishina cross-section to calculate Compton

losses. We constrain physical jet parametersB, γp, R, δ, N0 from SED observable quantities.

Results: IC Modeling
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Figure 2:The SSC (left) and EC (right) model fit on blazar SEDs (Anjum et al. 2020).

The SSC model successfully fits the Fermi γ-rays of HBLs.
The EC component is necessarily important in LBLs and FSRQs.

The γ-ray location might be at the edge of BLR.

Results: Curvature and Blazar Sequence
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Figure 3:Distributions of physical jet parameters of the blazar sample (Anjum et al. 2020).
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Figure 4:The relation of jet powerPj with peak energy γp (left) and curvature b (right).

The different blazar classes show a systematic trend of source parameters.

Jet power is negatively correlated to peak energy γp (blazar sequence).

Jet power shows positive relation against curvature b.
Spectral curvature might be an important parameter of blazar sequence in addition to νp

and νpLνp
.
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Results: Stochastic Acceleration

We study the relationship between electron peak energy γp and curvature b as constrained
by SED modeling.
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Figure 5:Relationship between peak energyγp and b for BL Lacs (left) and FSRQs (right). The solid lines represent

best linear fits.

BL Lacs show the signature anti-correlation expected in stochastic acceleration.

FSRQs show a mild positive relationship opposite to BL Lacs.

Cooling might be irrelevant in BL Lacs but important in FSRQs due to additional EC

component.
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Figure 6:Relationship between peak energy γp and b for TeV BL Lacs based on Ding et al. (2017).

Based on modeling of TeV BL Lacs by Ding et al. (2017), we find results similar to our BL

Lac sample.

Stochastic Acceleration & Cooling Scenario

Diffusive shock acceleration is a stochastic process.

The time evolution of electron spectrum in a cooling and diffusive shock is described by

∂N(γ, t)
∂t

=
∂

∂γ

[
{C(γ, t) − A(γ, t)} N(γ, t) + D(γ, t)

∂N(γ, t)
∂γ

]
−E(γ, t)−Q(γ, t)

Injection term: Q(γ, t)

Escape term: E(γ, t) = N(γ, t)/tesc

Escape time: tesc = R/c

Diffusion coefficient: D(γ, t)

Diffusive gain term: A(γ, t)

Cooling term: C(γ, t) = 4σt

3mec
γ2[UB(t) + Urad(γ, t)]

A magnetic turbulence accelerate the particles via resonant interactions of particle and MHD

modes of turbulence (Stawarz & Petrosian 2008).

The turbulence spectra is given byW (k) = δB(k)2

8π

(
k

k0

)−q

, k = 2π/λ

q = 1 for Bohm diffusion, q = 2 for hard-sphere spectrum, q = 5/3 for Kolmogorov
spectrum, and q = 3/2 for Kraichnan spectrum.

Diffusion coefficient: D(γ) ' β2
A

(
δB
B

)2
(

ρg

λmax

)q−1
γ2c2

ρg c

Alfven speed:βA = vA/c

Larmor radius: ρg = γc/eB

Turblence parameter= ∂B2/B2

Acceleration time: tacc ' γ2

D(γ) = ρg (γ0)
cβ2

A

(
B2

δB2

) (
γ

γ0

)2−q

Spatial diffusion: Dx ≈ p2β2
A/D(γ)

Escape time: tesc ' R2

Dx
≈ R2

(cβA)2tacc

The diffusion and gain timescales are do not depend on particle energy for hard-sphere (q=2)

acceleration (Tramacere et al. 2011).

Evolution of Curvature

Figure 7:The evolution of EED (left) and curvature r (right) in a combined scenario for hard-sphere q = 2 for
impulsive injection and no escape, with turbelnce level ∂B/B = 0.1, βA = 0.5 and jet sizeR = 1015 cm

(Tramacere et al. 2011).

Tramacere et al. (2011) showed that curvature decreases continuously as the γp grows initially.

When cooling compensate the acceleration, the curvature increases with energy in the cool-

ing dominated regime leading to a steady state where curvature remains remains constant with

energy.

Conclusions & Summary

The curvature might be an important parameter of blazar sequence.

The curvature in BL Lacs evolves in the acceleration dominated phase showing the

signature anti-correlation between curvature and γp .

The curvature in FSRQs evolves in a cooling dominated regime.

The nature of underlying turbulence in blazar jets should be hard-sphere.
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